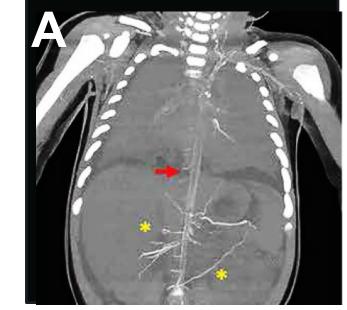
ASBMR 2021 ANNUAL MEETING

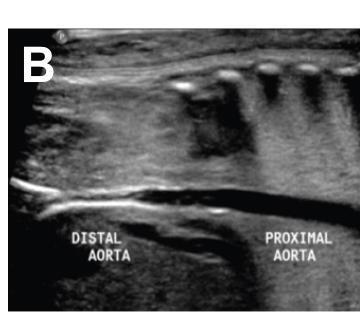
October 1 - 4, 2021

ENPP1-DEFICIENT PATIENTS PRESENT WITH BOTH SKELETAL COMPLICATIONS AND ECTOPIC CALCIFICATION

Frank Rutsch¹, Yvonne Nitschke¹, Kristina Kintzinger¹, Mary Hackbarth², Ulrike Botschen¹, Rachel Gafni³, Pedro Huertas⁴, Deborah Wenkert⁵, Gus Khursigara⁵, William Gahl², Carlos R. Ferreira²

¹Muenster University Children's Hospital, Münster, Germany, ²National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States, ³National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States, ⁴Mirror Neuron Partners LLC and Harvard–MIT Program in Health Sciences and Technology, Boston, Massachusetts;, ⁵Inozyme Pharma, Boston MA, USA




National Human Genom Research Institute

INTRODUCTION

ENPP1 Deficiency is a genetic condition caused by loss-of-function mutations in the *ENPP1* gene. Infants can manifest with ectopic arterial calcifications (**Fig 1A**), stenoses (Fig 1B) and cardiac complications, usually diagnosed as generalized arterial calcification of infancy (GACI).¹ Approximately 50% of infants with GACI do not survive the first 6 months of life. Paradoxically, children and adults with ENPP1 Deficiency often develop autosomal recessive hypophosphatemic rickets type 2 (ARHR2), due to inappropriately high FGF23 levels.¹,² The presentation of ENPP1 Deficiency rickets can mimic the femoral bowing and metaphyseal irregularities of other hypophosphatemic rickets (**Fig 1C**)

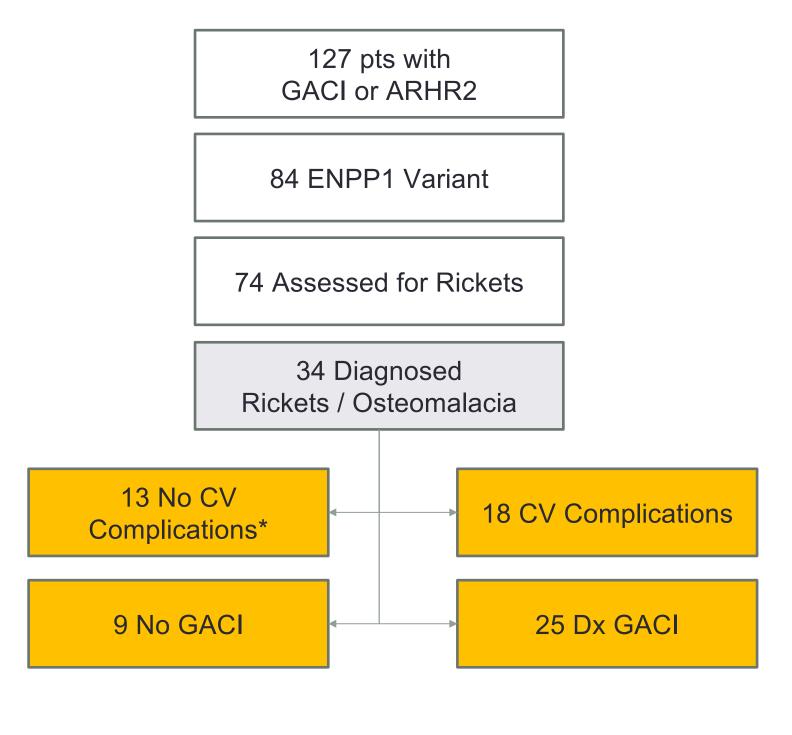
Boyce AM et al. Curr Osteoporos Rep. 2020;18(3):232-241

Figure 1. A. CT showing arterial calcification. **B**. Ultrasound showing calcification of the aorta. **C**. Radiographs demonstrating genu valgum secondary to hypophosphatemic rickets

AIM

We report on a cross-sectional retrospective review of 74 patients with ENPP1 Deficiency, characterizing the prevalence and onset of skeletal complications to accelerate diagnosis and management.

METHOD


A retrospective, cross sectional chart review of 127 medical data sets from 19 countries was conducted as a collaboration between National Institutes of Health (NCT03478839) and Münster University Children's Hospital (NCT03758534).²

Includes 116 patients diagnosed with GACI and 11 patients diagnosed with ARHR2. The methodology of the study has previously been described. ²

This subgroup analysis included patients with a confirmed ENPP1 variant, assessed for rickets and cardiovascular complications (Fig 2).

RESULTS

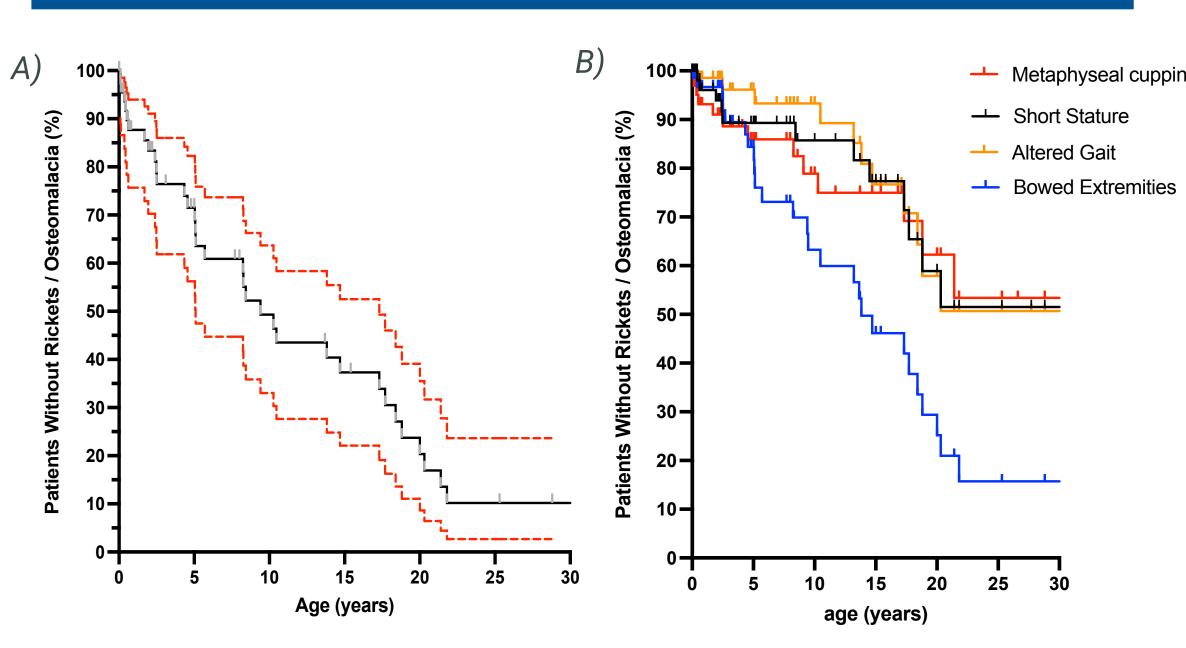

Prevalence of Rickets / Osteomalacia

Figure 2. Prevalence of Rickets and CV complications in ENPP1 Deficient patients

- Ricket / osteomalacia defined by altered gait, bowed extremities, metaphyseal cupping or short stature.
- Rickets reported in 46% (34/74) of patients.
- Median age of reported rickets/osteomalacia was 4.3 yr (range: 0.09-13.8 yr);
- CV complications reported in 58% (18/31) of patients with rickets*
- 25% of patients with rickets did not have a diagnosis of GACI
- Calcification of the aorta (68%) and arteries (71%) was was present in (1) most (2) but not all patients with rickets from ENPP1 Deficiency, (3) including in some without a history of GACI
- * 3 patients did not report assessment for CV complications

Risk of Developing Rickets / Osteomalacia

Figure 3. KM Estimate for risk of developing Rickets. A) 90% risk of rickets /osteomalacia by age of 25. B) KM Estimate for each reported individual skeletal complications

CV Complications

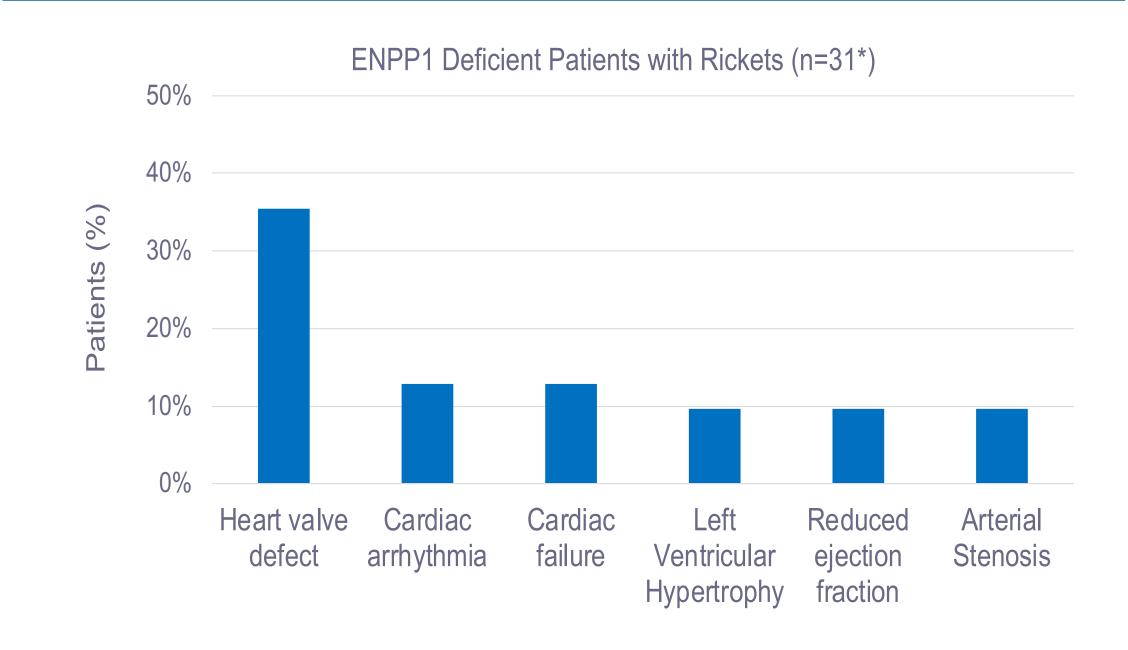
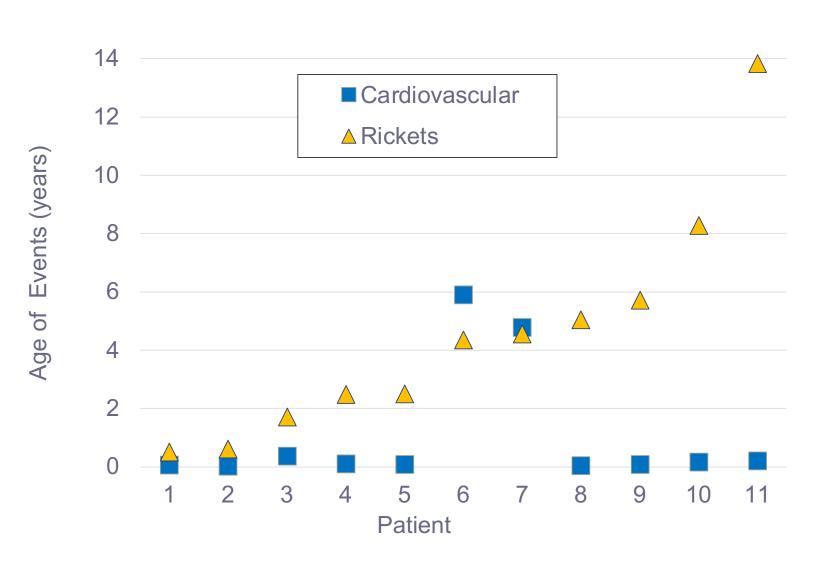



Figure 4. Patients with Rickets have documented cardiovascular complications

CV Complications Before and After Rickets

Figure 5. Three of 11 (27%) patients recorded CV complications within 6 months or after evidence of rickets. Includes patients with recorded dates for both CV and ricket symptoms

Patients With Rickets / Osteomalacia Not Diagnosed with GACI

Patient	Cardiac Complication	Arterial Calcification
Pt 14	Heart Valve defect	
Pt 13	Heart Valve defect, Aortic regurgitation	
Pt 12	Heart Valve defect	Renal
Pt 5	Heart Valve defect	Aorta, Carotid, Femoral, Illiac,
Pt 11	Arrhythmia, Card failure, Myocardial Fibrosis	
Pt 15	-	-
Pt 16	-	-
Pt 17	-	-
Pt 18	-	-

Table 1. 5 of the 9 pts with no diagnosis of GACI have evidence of CV complications or arterial calcification in the medical history

CONCLUSIONS

In this study the majority of patients with ENPP1-deficiency will develop skeletal complications suggesting continued monitoring for rickets.

- Genetic testing for ENPP1 Deficiency should be considered for any patient with hypophosphatemic rickets.
- History of arterial calcification or cardiovascular complications should trigger consideration of ENPP1 Deficiency as the etiology.
- No prior history of ectopic calcification or diagnosis GACI should not rule out ENPP1 Deficient rickets since rickets may be the first presentation.
- Identification of rickets due to ENPP1 Deficiency warrants further and continued evaluation of disease related cardiovascular complications and ectopic calcification.

REFERENCES

- 1. Rutsch F et al Hypophosphatemia, Hyperphosphaturia, and Bisphosphonate Treatment Are Associated With Survival Beyond Infancy in Generalized Arterial Calcification of Infancy. *Circ Cardiovasc Genet.* 2008;1:133-140.
- 2. Ferriera C et al. Ectopic Calcification and Hypophosphatemic Rickets: Natural History of ENPP1 and ABCC6 Deficiencies. *J Bone Miner Res.* 2021. doi:10.1002/jbmr.441

FUNDING.

